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Abstract—In this paper, we propose a novel generic image
prior—gradient profile prior, which implies the prior knowledge
of natural image gradients. In this prior, the image gradients are
represented by gradient profiles, which are 1-D profiles of gra-
dient magnitudes perpendicular to image structures. We model
the gradient profiles by a parametric gradient profile model.
Using this model, the prior knowledge of the gradient profiles
are learned from a large collection of natural images, which are
called gradient profile prior. Based on this prior, we propose a
gradient field transformation to constrain the gradient fields of the
high resolution image and the enhanced image when performing
single image super-resolution and sharpness enhancement. With
this simple but very effective approach, we are able to produce
state-of-the-art results. The reconstructed high resolution images
or the enhanced images are sharp while have rare ringing or jaggy
artifacts.

Index Terms—Gradient field transformation, gradient pro-
file prior, image enhancement, natural image statistics, super-
resolution.

I. INTRODUCTION

T HERE HAS been much attention in modeling natural
image prior in recent years [1]–[3]. Image prior has

been widely investigated in super-resolution [4]–[7], denoising
[2], [8], inpainting [9], deblur [10], [11], etc. Due to the
ill-posedness of these problems, natural image prior is crucial
to derive the reasonable results consistent with the natural
image statistics.

The most traditional category of image prior is the edge
smoothness prior, which generally models the smoothness of
image edges. The edge smoothness prior has nice explanation
in variational framework and partial differential equation (PDE)
theory. This category of prior generally regularizes the first or
higher order derivatives of image which implies the smoothness
of image edges. Then a PDE is derived to minimize the related
energy functional in the variational framework [12]–[14]. In
recent years, sparsity deduced priors [15]–[17] were widely
investigated, in which the image or signal is assumed to be
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represented by the sparse linear combination of over-complete
dictionary of basis, and successfully applied to the problems of
super-resolution, denoising and etc.

Another category of image prior is the generic image prior,
which generally learns the non-Gaussian marginal distributions
of the filter responses of natural images. Laplacian distribution
[18], generalized Gaussian distribution (GGD) [18]–[20] and
Gaussian scale mixture distribution [3] are proposed to model
the image statistics. Steerable random fields model [8] improves
the performance of image prior by considering the local image
structures, in which the distribution of image gradients aligned
with and orthogonal to local image structures are learned. In [2],
[1], [21], filter bank and the distribution of filter responses over
the filter bank are jointly learned in the framework of Markov
random field (MRF) model. Especially, fields of experts (FoE)
model [2] learns the translation invariant image statistics from
the training set of image overlapping patches. This model has
achieved excellent results for low level vision problems.

However, these pervious generic image priors only concern
the marginal distribution of image filter responses (e.g., the gra-
dients) over the whole image, and their spatial layouts are dis-
carded [18], [3] or weakly incorporated [2], [8]. In this work,
we will focus on the investigation of the spatial layouts of nat-
ural image gradients. We describe the spatial layout of image
gradients by gradient profiles, in which each gradient profile is
defined as the 1-D profile of gradient magnitudes along the gra-
dient direction passing through an edge pixel. We parametrically
model the gradient profile by GGD function, which is called gra-
dient profile model. It describes the shape and sharpness of gra-
dient profiles in natural image. Based on this model, we learn
the regularities of gradient profiles from a large training set of
natural images. We observe that, firstly, the shape statistics of
the gradient profiles is stable to the image resolution. Second,
the distribution of sharpness in natural images can be well mod-
eled by -distribution. Thirdly, the sharpness of gradient profiles
in high resolution (HR) image is statistically dependent on the
sharpness of the corresponding gradient profiles in low resolu-
tion (LR) image. These prior knowledge of natural image gra-
dient profiles are called gradient profile prior in this paper.

Based on the gradient profile prior, gradient field transfor-
mation is proposed to transform the observed gradient field to
the target gradient field through mapping the shape and sharp-
ness of the observed gradient profiles. The transformed gradient
field provides an effective gradient domain constraint on the
target image. As the shape parameter is stable to resolution, the
remaining problem is to investigate the sharpness dependency
between the observed image and the target image for specific
application.

1057-7149/$26.00 © 2010 IEEE
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We apply the gradient profile prior to the problems of
single image super-resolution and enhancement. Single image
super-resolution [4]–[7], [22] is to estimate a sharp HR image
with minimal artifacts (e.g., jaggy or ringing artifacts) from a
single LR image. To design a good single image super-resolu-
tion algorithm, the essential issue is how to apply a good image
prior or constraint on the HR image due to the ill-posedness of
super-resolution. Using the relationship of sharpness between
HR image and LR image, we infer the HR gradient field from
the LR image by gradient field transformation. Then the esti-
mated HR gradient field imposes a gradient domain constraint
for the HR image. By coupling the gradient domain constraint
and the image reconstruction constraint, the inferred HR image
is sharp and rarely has jaggy or ringing artifacts along high
frequency structures.

For the application of image enhancement, we apply the gra-
dient field transformation to estimate the sharpened gradient
field, in which the sharpness mapping function from the blurry
image to the sharpened image should be given. Then the sharp-
ened image can be recovered from the transformed gradient
field. We design two methods to derive the sharpness mapping
function. First, a parametric sharpness mapping function is de-
signed for enhancing the sharpness of blurry image, in which a
single parameter is free to be tuned by the user. Second, sharp-
ness transfer mapping function is designed by transferring the
sharpness distribution of a given sharp image or natural images
to the blurry image.

Compared with the previous generic image prior, the gradient
profile prior has the following advantages: 1) unlike generic
smoothness prior and edge smoothness prior, the gradient
profile prior forces the image gradient field close to the trans-
formed gradient field rather than preferring the gradient field
with lower magnitude in the smoothness prior. Therefore both
small scale and large scale details can be well recovered in the
enhanced image; 2) the common artifacts in super-resolution
or enhancement, such as ringing artifacts, can be well avoided
by working in the gradient domain. A successful application
of generic image prior is the work on camera shake removal
proposed by Fergus et al. [10]. In that work, the marginal
distribution of image gradients fitted by Gaussian mixture
model is utilized to regularize the motion-deblurred image
and produces the state-of-the-art results. The key difference
with our proposed gradient profile prior is that, the marginal
distribution in [10] concentrates on the heavy-tailed marginal
distribution of gradients over the whole image and discards the
spatial layout of gradients.

This paper is organized as follows. In Section II, we present
the gradient profile model and the gradient profile prior learned
from natural images. In Section III, we propose the gradient
field transformation to enhance gradient field. In Section IV and
V, we apply the gradient field transformation to single image
super-resolution and enhancement respectively. We discuss and
conclude this work in Section VI.

A. Related Work of Single Image Super-Resolution

There have been much work on single image super-resolu-
tion in recent years. They are classified into three categories of

approach: interpolation based approach, reconstruction based
approach, and learning based approach. The interpolation
based approach [23]–[25] estimate the high-resolution image
by interpolating the unknown pixels based on the surrounding
known pixels. Recently, sophisticated interpolation methods
are proposed using the sparse mixing estimation [15] and
adaptive 2-D autoregressive modeling [26]. The interpolation
based approach tends to blur the high frequency details if the
low resolution image is generated with anti-aliasing operation
on the high resolution image. The reconstruction based ap-
proach [27]–[30] enforces a reconstruction constraint which
requires that the smoothed and down-sampled version of the
HR image should be close to the LR image. Back-projection
[27] is a typical reconstruction based method. It introduces
jaggy or ringing artifacts around edges because no regular-
ization is imposed. Image prior is necessary to regularize the
reconstruction constraint to reduce these artifacts. The learning
based approach [31], [32], [5], [33], [4], [28], [34]–[36], [17]
“hallucinates” high frequency details from a training set of
HR/LR image pairs. Primal sketches (e.g., edges, ridges and
corners) are hallucinated in [5] because human eye is more
sensitive to these features for recognition. The learning based
approach highly relies on the similarity between the training set
and the test set. It is still unclear how many training examples
are sufficient for the generic images. Recently, Fattal [34]
proposed an edge statistics (EFCM) of image gradients, which
is learned from HR and LR image pairs, for image upsampling.
EFCM is the statistics of the local continuity measures in the
HR image conditional on the 3-D edge features in the LR
image. The edge statistics are imposed on the HR image by
constraining the local continuity measures searched from a
learned 5-D EFCM table given the 3-D edge features of LR
image. It has achieved convincingly excellent results for single
image super-resolution. We will explicitly compare with the
Fattal’s work in the Section VI-A.

B. Related Work of Image Enhancement

The most popular approach for image enhancement is the un-
sharp masking (UM) technique [37]. In this approach, the ob-
served image is firstly blurred by a low-pass filter, then subtract
the blurred image from the observed image, and add a fraction of
the difference back to the observed image. The unsharp masking
approach can well recover image sharpness, however it tends to
introduce ringing artifacts around image structures.

Another category of edge enhancement approaches is
shock filter [38], [39]. It enhances image edges by solving
an inverse partial differential equation. The shock filter
generally enhances the image edges detected by the edge
detector which is implicitly defined in the equation. Osher
and Rudin [40] proposed to sharpen a blurry image by

, where , and
can be considered as an edge detector. The pixels

satisfying are edge pixels. This equation governs a
dilation process when and an erosion process when

. As the equation evolves, the enhanced image tends to
be piecewise constant due to the morphological operations.
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More types of shock filters are designed to enhance image
edges detected by differently defined edge detectors [41], [39],
[42]. The shock filters are capable of producing highly sharp en-
hancement results, however it tends to sharpen all the detected
edges to be sharp discontinuities independent of their original
sharpness. Our proposed edge enhancement approach is able
to adaptively sharpen the image edges based on their original
sharpness. Therefore the enhancement results are more reason-
able to human perception.

II. GRADIENT PROFILE PRIOR

In this section, we will characterize the image gradient field
by the gradient profiles centered at the zero-crossing pixels in
the gradient domain. The regularities of gradient profiles in nat-
ural image, which is called gradient profile prior, will be learned
from a large training set of natural images.

A. Gradient Profile

Denote the image gradient as ,
where is the gradient magnitude and

is the gradient direction. In the
gradient field, we denote the zero-crossing pixel, which is the
local maximum on its gradient direction, as an edge pixel. To
obtain the edge pixels, we firstly convolve the image by discrete
gradient operator and to
obtain and respectively. Then edge pixels are detected
by nonmaximum suppression.

Fig. 1(a) is two image blocks containing two edges with dif-
ferent sharpness. Fig. 1(b) is corresponding gradient magnitude
(normalized and inverted) maps. As shown in Fig. 1(b), starting
from edge pixel , we trace a path along the gradient di-
rections (two-sides) pixel by pixel until the gradient magnitude
does not decrease anymore. We call the curve of gradient mag-
nitudes along the 1-D path as gradient profile. Fig. 1(c)
is two illustrated gradient profiles. For subpixel accuracy when
tracing the gradient profile, linear interpolation is used to esti-
mate the gradient of the interpolated pixels with noninteger spa-
tial coordinates as shown in Fig. 1(d).

To analyze the gradient profile, we first consider an image
with a straight step edge blurred by a blur kernel .
Without loss of generality, we assume the step edge is aligned
with the y-axis. Then we can prove the following theorem.

Theorem 1: Given an ideal image with a straight step
edge aligned with y-axis, and the image is blurred by a blur
kernel . Then the normalized gradient profile passing
through the edge is , which is the integral of the
blur kernel along the edge direction (i.e., y-axis).

Proof: The image can be formulated as
, where and are gray-scale

values on the right and left sides of the edge, is the
Heaviside function which equals to 1 when and equals to
0 when , and is the blur kernel. Then the gradient
of image is

Fig. 1. Gradient profile. (a) Two edges with different sharpness. (b) Gradient
maps (normalized and inverted magnitudes) of two rectangular regions in (a).
��� � is a 1-D path passing through the edge pixel � , by tracing along gra-
dient directions (two sides) pixel by pixel until the gradient magnitude does not
decrease at � and � . (c) Gradient profiles are curves of gradient magnitudes
along the ��� �. (d) Subpixel technique is used to trace the curve of gradient
profile. The gradient of pixel � is interpolated by its two nearest pixels (� and
�) on the image grid.

Fig. 2. Estimate the sharpness of gradient profiles. The sharpness of gradient
profiles are shown by colors at the edge pixels indexed by the color bars in the
rightmost part of the figure. The four sharpness maps in (b) show the sharpness
of gradient profiles without global optimization, and with global optimization
using � � �� �� ��. The sharpness map with � � � is smooth along edges while
preserving the sharpness discontinuity when the gradients change significantly.
(a) Image. (b) Sharpness estimation for edges in rectangle region of (a).

and the gradient magnitude is . Obviously,
the gradient profile is a 1-D straight line orthogonal to the edge
direction (i.e., y-axis) in this case. Therefore, the normalized
gradient profile is the integral of blur kernel along the edge di-
rection, i.e., .

This theorem tells us that the gradient profiles of a straight
step edge blurred by a kernel are determined by the
blur kernel itself. If the kernel is a Gaussian kernel

with bandwidth , then the gradient profiles will
be 1-D Gaussian kernel . However, the edges in nat-
ural images are complicated (e.g., step edge, ridge edge, corner
edge, etc.), which are not necessarily the straight and step edges.
And the blurs are commonly caused by out-of-focus, motions,
shadows, etc., which are hard to be explicitly modeled. There-
fore it is unrealistic to theoretically model the gradient pro-
files of natural image covering all these factors. We will investi-
gate the overall regularities of gradient profiles through learning
from the natural images.
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Fig. 3. Profile sharpness distribution of natural images. The histogram of profile sharpness in natural images is shown in the right subfigure. It is shown that
the sharpness of natural images are dominantly distributed around 0.70, and heavy-tailed distributed when the sharpness is increasing. The �-distribution with
parameters � � ���� and � � ���� can well fit the sharpness distribution.

B. Gradient Profile Sharpness

Now we measure the sharpness of gradient profile. As shown
in Fig. 1(b), (c), the gradient profile in blurry image has wider
nonzero spatial scattering than the gradient profile in sharp
image. We measure the sharpness of gradient profile by its
spatial scattering which can be well modeled by the square root
of the variance (second moment) of gradient profile

(1)

where and is the curve
length of the gradient profile between and . Obviously, the
sharper image gradient profile, the smaller the square root of
variance is. We call this measure as the profile sharpness.

Profile Sharpness Estimation: Individually estimating the
sharpness for each gradient profile is not robust. To have a
better estimation, we apply a global optimization to enforce
the sharpness consistency of neighboring gradient profiles as
follows.

First, we construct a graph over all the gradient profiles,
and the neighboring gradient profiles of a profile passing
through edge pixel are defined as the profiles with edge
pixels within a predefined distance (five pixels in this paper)
to . Then we minimize the following energy to estimate the
sharpness for each profile with global optimization

(2)

where is individually estimated using (1) for profile .
The edge weight for neighboring profiles and
is defined as

, in which implies the Euclidean distance.
In our implementation, and are set to 0.16 and 0.08, which

Fig. 4. Average KL divergences and � distances between the fitted gradient
profiles and 1 million gradient profiles by varying the shape parameter �. The
optimal � is near 1.6 on four data sets with different resolutions.

impose larger importance on the gradient similarity. By the def-
inition of weight, the gradient profiles with similar spatial posi-
tion and gradients on their edge pixels are enforced to have sim-
ilar sharpness. The parameter controls the strength of sharp-
ness smoothness, which is set to 5 to achieve smooth profile
sharpness while preserving the sharpness discontinuity when
the gradient profiles change significantly. Please refer to Fig. 2
for the effect of parameter . The energy function can be effec-
tively minimized because it is a Gaussian MRF model.

Profile Sharpness Distribution of Natural Images: We now
investigate the profile sharpness distribution of natural images.
Generally, the natural images are captured by focusing on
the foreground layer in which the objects are sharp and tex-
tured, while the objects in the out-of-focus layers are blurry.
Therefore, the sharpness values of gradient profiles in natural
images should be dominantly distributed around a smaller
value which implies higher sharpness in appearance. Fig. 3
illustrates the profile sharpness distribution of natural images
in the left subfigure of Fig. 3. It is shown that the sharpness
of gradient profiles are dominantly distributed around 0.7, and
heavy-tailed distributed with the increase of sharpness value.
We also find that the sharpness distribution of natural images
can be well fitted by - distribution with density function

, in which is the
profile sharpness and always nonnegative, and are
parameters of this distribution. For the empirical distribution
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Fig. 5. Examples of fitted gradient profiles using GGD with shape parameter 1.6. �-axis denotes the distance or minus distance of pixels on the two sides of
gradient profile to the edge pixel. � -axis denotes the gradient magnitude. The scattered points are the observed gradient magnitudes of pixels on the gradient
profiles, and the continuous curves denote the fitted gradient profiles.

shown in Fig. 3, the -distribution with parameters
and well fits this sharpness distribution.

C. Gradient Profile Model

Next, we investigate the regularities of gradient profiles in
natural images. We parametrically describe the gradient profiles
by the density function of a generalized exponential distribution,
i.e., GGD [43], which is defined as

(3)

where is gamma function and
is the scaling factor which makes the second moment of GGD
equal to . Therefore, can be directly estimated as the
second moment of the profile, i.e., the profile sharpness. is
the shape parameter which controls the overall shape of the
distribution. The distribution function is Gaussian
distribution function if , and a Laplacian distribution
function if . This parametric model of (6) for image
gradient profiles is called gradient profile model in this paper.

GGD has been widely used to model the statistical distribu-
tion of filter responses of natural images [19], [20]. Different
from these work, the density function of GGD is utilized to
fit the curves of gradient profiles in natural images. To fit the
gradient profiles in natural images, we collect an image set
containing 1000 natural images downloaded from professional
photography forums. All images are in the original resolution
without down-sampling or up-sampling. For each image, we
randomly select 1000 gradient profiles to construct a data
set which consists of 1 million gradient profiles. We also
construct other three profile data sets and from the
down-sampled versions of the original resolution images with
the down-sampling factors of 2, 3, and 4.

We use Kullback-Leibler (KL) divergence and distance to
measure the fitting error. The optimal is obtained by mini-
mizing the average fitting error over the training set of gradient
profiles (e.g., or )

(4)

where is the sharpness of one gradient profile in the set
, which is estimated in Section II-B. Using Kullback-Leibler

(KL) divergence as the error measurement, the fitting error be-
tween gradient profile and the gradient profile model is de-
fined as

(5)

where
are the normalized gradient

profile model and gradient profile, and denote the pixels on
the gradient profile , and is the gradient magnitude of
pixel . Using distance as the error measurement, the fitting
error between the gradient profile and the gradient profile
model is defined as

(6)

where .
Due to the high nonlinearity of (4) combining with (5) or (6),

we resort to the direct search of minimizing the average fitting
error over the training set. We compute the average KL diver-
gences and distances on four profile sets , and

by varying the shape parameter , as shown in Fig. 4. We
observe that the optimal shape parameter is about 1.6 for all
down-sampling factors and two types of error measurements.
The shape parameter is stable across different resolutions,
which means that the shape parameter of gradient profile model
is resolution independent in natural images.

Fig. 5 illustrates three examples of observed gradient pro-
files fitted by GGD with shape parameter 1.6. To verify whether
the parameter is independent on our collected data or
not, we repeat the above experiments on two different image
sources. One is 500 images randomly downloaded from Flickr
image site. The other is 500 images from a home photo gallery
taken with four different digital cameras. Again, the obtained
optimal shape parameters are stable and between 1.55 and 1.65,
which means the GGD function with is a good generic
model for the natural image gradient profiles and independent
on the image resolution. Based on this nice property, we only
need to study the relationship of the profile sharpness for spe-
cific application.
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Fig. 6. Expected sharpness of the gradient profiles in HR image with respect
to sharpness of the corresponding profiles in up-sampled image.

D. Relationship of Profile Sharpness Between HR Image and
LR Image

We now investigate the relationship of profile sharpness be-
tween HR image and LR image, which is important for the
application of image super-resolution. Similar to the previous
methods [31], [5], [34], we study the relationship of gradient
profile sharpness between the up-sampled image and the
HR image , in order to avoid the shifting problem of the
zero-crossing pixels in scale space [44]. In our implementation,
the up-sampled image is the bicubic interpolation1 of the LR
image .

For each gradient profile in the up-sampled image , we
extract its corresponding gradient profile in the HR image .
Because the edge pixels are not exactly aligned in two images,
we find the best matched edge pixels by measuring the distance
and direction. For each edge pixel in , the best matched
edge pixel in is found by

where is the 5 5 neighbors
of in the HR image.

To compute the statistical dependency of profile sharpness
between HR image and LR image, we quantize the sharpness

into a number of bins. The width of bin is 0.1. For all LR
gradient profiles whose sharpness value falls in the same bin,
we calculate the expectation of sharpness of the corresponding
HR gradient profiles. Fig. 6 shows three fitted curves of com-
puted expectations for the up-sampling factors of 2, 3, and 4.
X-axis is the sharpness of the (up-sampled) LR gradient profile
and Y-axis is the expected sharpness of the corresponding HR
gradient profile.

There are two basic observations from Fig. 6: 1) the HR gra-
dient profile is sharper than the LR gradient profile because the
bicubic interpolation blurs the profile; 2) the higher the up-sam-
pling factor, the larger the sharpness difference between the
HR gradient profile and the LR gradient profile is. Notice that

1Note that the statistic of shape parameter � in the up-sampled image may
be slightly influenced by the bicubic interpolation. However, we found that the
optimal � value for the up-sampled image is still stable. They are 1.63, 1.68,
and 1.69 for the up-sampling factors of 2, 3, and 4 on our data sets.

three curves converge together when the sharpness is below 1.0
in Fig. 6. One possible reason is due to the inaccuracy of our
sharpness estimation. The sharpness estimation for the small
scale edge is sensitive to the noise. Also, the introduced image
aliasing in the LR image by down-sampling may result in over-
estimated sharpness.

E. Summary of Gradient Profile Prior

In summary, we have learned the following prior knowledge
of the gradient fields of natural images based on the gradient
profile model : 1) the shape parameter of the gradient profiles
in the natural image is close to the value 1.6; 2) the sharpness
distribution of the natural image can be well fitted by a -distri-
bution with learned parameters; 3) the sharpness relationship of
gradient profiles between two resolutions follows the statistical
dependency learned in Section II-D. These prior knowledge of
the gradient field of natural image are called gradient profile
prior in this paper.

III. GRADIENT FIELD TRANSFORMATION

Based on gradient profile model and gradient profile prior,
we propose the gradient field transformation to estimate the gra-
dient field of the target image in image super-resolution and en-
hancement. The transformed gradient field is derived by trans-
forming the gradient profiles of the observed image. We also
propose the approach to reconstruct the image from the trans-
formed gradient field. Please refer to the electronic versions of
the color figures in the following sections for better illustration.

A. Gradient Field Transformation

First, we study how to transform a gradient profile with pa-
rameters in the observed gradient field to the gradient
profile with parameters in the target gradient field.
Obviously, the gradient profile can be derived through multi-
plying by the ratio between and . Based on the gradient
profile model in (3), the transform ratio between gradient pro-
files and is

(7)

where
and are a pixel and the edge pixel of the gradient profile ( or

), and is the curve distance between and along
the gradient profile. Thus, the gradient profile is estimated by
multiplying the gradient profile by the transform ratio .

Generally, the parameters of the observed gradient
profile can be computed from the observed image. However,
the setting of parameters is nontrival, which should
be based on the prior knowledge of the gradient profiles in the
target image. The setting of parameters will be inves-
tigated for specific application in the following sections. Fig. 7
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Fig. 7. Illustration of transform ratio in (7). (a) � � ���� � � ���� � � ���� � � ���. (b)� � ���� � � ���� � � ���� � � ���. (c)� � ���� � �

���� � � ���� � � ���. When the distance to edge pixel is smaller than � , the transform ratio is larger than 1, and otherwise it is smaller that 1. Multiplying
gradient profile by the transform ratio, the gradient magnitude of pixel on the gradient profile within distance � to the edge pixel will be increased, and otherwise
it will be decreased.

Fig. 8. Gradient field transformation (please refer to the electronic version for
better illustration). (a) Left and middle subfigures illustrate a gradient profile
passing through � and � . The gradient of � is transformed to its enhanced ver-
sion (right) by multiplying a transform ratio �. (b) Observed images. (c) Gra-
dient maps of images in (b). (d) Transformed gradient fields. (e) Reconstructed
images by solving poisson equation. The gradient field transformation can well
transform the step edges and edges around corners in the second row, ridge edges
in the third row, and highly textured edges in the fourth row.

shows three examples of transform ratios with different param-
eter settings. Multiplying a gradient profile by the transform
ratio, the gradient magnitudes of the pixels on the gradient pro-
file within distance to the edge pixel will be increased, and
otherwise will be decreased. In this way, the observed gradient
profile is enhanced to be a sharper profile with smaller spatial
scattering. Fig. 8(a) presents an illustrative example to show
how the gradient profile is enhanced by multiplying the trans-
form ratio.

Second, using the transform ratio defined in (7), we estimate
the target gradient field by transforming the gradient profiles in

the observed gradient field . Then the target gradient field
is estimated by

(8)

where is any pixel with nonzero gradient magnitude, and
is computed with respect to the gradient profile passing through

. In our implementation, to find the gradient profile passing
through , we trace from along the direction (gradient direc-
tion or minus gradient direction) with increasing gradient mag-
nitude until reach an edge pixel (in a threshold distance, e.g.,
1 pixel), then adjust the gradient of by (8).

Gradient Field Transformation for Different Types of Edges:
Natural images are composed of complicated edges, e.g., step
edge, ridge edge and edge around corners or in highly textured
region. In these cases, multiple gradient profiles may intersect
at a certain pixel due to the sudden change of edge direction
and the discrete image grid. To avoid the multiple enhance-
ments for a single pixel at which multiple profiles intersect,
we perform gradient field transformation for each pixel with
nonzero gradient rather than each gradient profile. To enhance
the gradient of each pixel by (8), the gradient profile passing
through this pixel is traced using subpixel interpolation along
the gradient direction [similar to Fig. 1(b)]. Therefore, a dense
enhanced gradient field over all the nonzero gradient pixels is
obtained by gradient profile transform. Fig. 8 presents three
real examples with complicated step edge, ridge edge and edge
around corners. Fig. 8(d) shows the enhanced gradient fields
transformed from Fig. 8(c). As we can observe, the gradients
of pixels along image structures are well enhanced by the gra-
dient field transformation.

B. Image Reconstruction From the Transformed Gradient
Field

Given the transformed gradient field, we now investigate
how to reconstruct image from the transformed gradient
field [45]. Assume is the image to be reconstructed, the
objective of image reconstruction is to constrain the gra-
dient field of as close to the transformed gradient field

as possible, i.e., to minimize the energy function
. This energy can be mini-

mized by solving the poisson equation .
This equation can be discretized and solved efficiently by
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Fig. 9. Effect of parameter � on the super-resolution results. The first image
shows the original image, and the other images are the down-sampled and then
up-sampled (3X) images with � � �� ����� ����� ����. The value under each
image is the Structural SIMilarity (SSIM) [47] between the super-resolution
result and the original image.

Fig. 10. HR image reconstruction (3X). (a) LR image (nearest neighbor in-
terpolation) and gradient field of its up-sampled image (bicubic interpolation).
(b) Result of back-projection and its gradient field. (c) Our result and trans-
formed gradient field for HR image. (d) Ground truth image and its gradient
field. Compared with the gradient field of result by back-projection, the trans-
formed gradient field is much closer to the ground truth gradient field of HR
image. Our reconstructed result has rare jaggy or ringing artifacts.

Gauss-Seidel iteration with over-relaxation method [46].
Fig. 8(e) shows the reconstructed images by solving poisson
equation. The recovered images are sharp and with rare ringing
artifacts.

IV. GRADIENT PROFILE PRIOR FOR IMAGE SUPER-RESOLUTION

In this section, we apply the gradient profile prior to image
super-resolution. Given a LR image, the gradient profile prior
learned from natural images provides prior knowledge of the
gradient field for the HR image: 1) the shape parameter of the
gradient profiles in the HR image is close to the value 1.6; 2) the
sharpness relationship of gradient profiles between two resolu-
tions follows the statistical dependency learned in Section II-D.
Through performing gradient field transformation, the prior es-
timation of the HR gradient field will impose a gradient field
constraint on the HR image.

A. Super-Resolution Model

Given the LR image , we first transform the gradient field of
the up-sampled image to estimate the HR gradient field using
the gradient field transformation defined in Section III-A. The
shape parameters and are set to the learned values of the
shape parameter in Section II-C. The sharpness is estimated
from the observed gradient profile in image and the sharpness

is set as the expected sharpness of gradient profiles in HR
image corresponding to using the relationship we learned in
Section II-D.

Fig. 11. Super-resolution on synthetic image (4X). (a) LR image (nearest
neighbor interpolation). (b) Reconstructed HR image. (c) Gradient field of the
up-sampled image (bicubic interpolation). (d) Transformed gradient field from
(c).

Fig. 12. Super-resolution comparison (3X). Gradient reconstruction is ob-
tained by solving poisson equations on the transformed gradient field. Both of
gradient reconstruction result (e) and our result (f) contain much less ringing
artifacts, especially along the image edges. But our result (f) is closer to the
ground truth by enforcing the reconstruction constraint. See text for details.
(a) Input. (b) Bicubic. (c) Sharpened bicubic. (d) Back-projection. (e) Gradient
reconstruction. (f) Our result. (g) Ground truth.

Given the LR image , in order to reconstruct the HR image
, we minimize the following energy function by enforcing the

constraints in both image domain and gradient domain

(9)

where is the estimated HR gradient field,
is the reconstruction constraint in the image domain and

is the gradient constraint in the gradient domain.
The LR image is generally modeled as the blurring and then

down-sampling of the HR image, and the blur kernel is deter-
mined by the point spread function of the camera sensor through
analyzing the image generation process in camera system [28].
Then the reconstruction constraint measures the difference be-
tween the LR image and the smoothed and down-sampled
version of HR image , i.e.,

(10)

where is a spatial filter, is the convolution operator, and
is the down-sampling operation. In real applications, the con-
volution kernel is commonly approximated by the Gaussian
function [6], [5], [4], [7]. The kernel standard deviations are em-
pirically set to 0.8, 1.2 and 1.6 for the up-sampling factors of 2,
3, and 4 [7], which increases with respect to the larger up-sam-
pling factor.

The gradient constraint requires that the gradient field of the
recovered HR image should be close to the transformed HR gra-
dient field

(11)

where is the gradient of . Using this constraint, we en-
courage the gradient profiles in to have the desired statistics
which are learned from natural images.
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Fig. 13. Super-resolution comparison (4X) of learning-based method [33], alpha channel super-resolution [7], gradient statistical prior using Gaussian mixture
model and our approach. Both large scale edges and small scale details (on the face) are recovered in our result. Please refer to the electronic version for better
comparison. (a) Input. (b) Learning-based. (c) Alpha channel super resolution. (d) Gradient statistical prior. (e) Our result. (f) Ground truth.

Fig. 14. Super-resolution results with up-sampling factor of 4 for images with
highly textured regions. The left images of (a) and (b) are the nearest neighbor
interpolated input images, and the right images of (a) and (b) are the results of
our method.

Fig. 15. Super-resolution results with up-sampling factors of 8 and 16. (a) 8X.
(b) 8X. (c) 16X.

The energy function of (9) is a quadratic function with respect
to , therefore it is convex and the global minimum can be
obtained by gradient descent flow

where
, and

. The divergence operator (i.e., div) can be imple-
mented using standard finite difference scheme.

In our implementation, we use the following iterative
schemes to optimize (9), i.e., .
We set the step size to 0.2 and use the up-sampled image
as the initial value of . In experiments, one hundred iterations
are enough to produce sharp and clear high-resolution results.

Fig. 16. More results on images from Berkeley segmentation database. The
images are down-sampled and then up-sampled in factor of 3. The quality of
results and computational time are listed in Table I. (a) Lady (3X). (b) Starfish
(3X).

Parameter balances the image domain constraint and gradient
domain constraint. Larger value of places larger importance
on the gradient domain constraint, which helps to produce
sharp edges with little artifacts. On the other hand, smaller
value of places larger importance on the image domain
constraint, which produces better image color and contrast,
however, may introduce ringing or jaggy artifacts along edges.
We set by experimental justification for better balance
between the artifacts removal and image color and contrast
recovery. Fig. 9 presents an example to show the effect of on
the super-resolution result, and produces best result.

Fig. 10 gives a real example of our method. Fig. 10(b) are
back-projection [27] result using the reconstruction constraint
only and its gradient field. Notice the ringing artifacts in both
image and gradient field. The bottom image in Fig. 10(c) is our
transformed gradient field. It is much closer to the ground truth
gradient field shown in Fig. 10(d). The top image in Fig. 10(c) is
our final reconstructed HR image using both image and gradient
constraints. The ringing artifacts are substantially suppressed by
the gradient constraint.

Fig. 11 also shows an example on a synthetic image. Our
approach can reconstruct a very sharp HR image guided by the
transformed gradient field.

B. More Examples and Evaluation

We test our approach on a variety of images. For the color
images, we transform the image from RGB color space to YUV
color space, and only perform image super-resolution on the
luminance channel. The color channels are up-sampled using
the bicubic interpolation.

In Fig. 12, we compare our approach with bicubic interpola-
tion, sharpened bicubic interpolation, back-projection [27], and
reconstruction from the transformed gradient field by solving
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TABLE I
SUPER-RESOLUTION QUALITY MEASUREMENT AND CPU TIME. THE CPU TIME IN BRACKETS ARE FOR GRADIENT FIELD

TRANSFORMATION AND ENERGY OPTIMIZATION RESPECTIVELY

poisson equation. The result of bicubic interpolation is over-
smooth. The sharpened bicubic interpolation and back-projec-
tion introduce ringing or jaggy artifacts, especially along salient
edges. The result of reconstruction from the transformed gra-
dient field is sharp and with rare artifacts, but the color is not
close to the ground truth HR image. By combing gradient con-
straint and reconstruction constraint, our final result is the best.

Fig. 13 shows the comparison of our approach with learning-
based method [31], alpha channel super-resolution [6] and gra-
dient statistical prior which is modeled as the marginal distribu-
tion of gradients using Gaussian mixture model [10]. The minus
logarithm of the gradient statistical prior is applied to substi-
tute the gradient constraint in (9) to produce high-resolution re-
sult. The result of learning-based method is sharp in appearance.
However, high frequency artifacts are also introduced from the
training samples, for example the artifacts around the nose. The
salient edges in alpha channel super-resolution result are sharp,
but the small scale edges, for example flecks on the face, are
not well recovered. That’s because it’s hard to estimate alpha
channel value for the edges with weak contrast and large blur.
The gradient statistical prior tends to enhance the high contrast
edges and smooth out the lower contrast details. The weight of
prior term is carefully selected to better preserve details while
enhancing salient edges in Fig. 13(d), and the edges around the
nose still have ringing and jaggy artifacts. Compared with these
results, our approach can recover both sharp edges and small
scale details, and introduce minimal additional artifacts.

Fig. 14 shows two super-resolution results of textured im-
ages with up-sampling factor of 4. It is shown that the textures
are well recovered in the HR images with rare artifacts. Fig. 15
shows three examples with up-sampling factor of 8 and one ex-
ample with up-sampling factor of 16, in which the HR results
are produced by repeatedly running our super-resolution algo-
rithm with up-sampling factor of 2. All of the results show that
our method can reliably recover the image details and produce
sharp edges with minimal additional artifacts.

We also compute RMS, ERMS [5], and SSIM [47] to qual-
itatively measure the super-resolution results. These measure-
ments on examples of Monarch (Fig. 10), Lena (Fig. 12), Head
(Fig. 13), Lady [Fig. 16(a)] and Starfish [Fig. 16(b)] are listed in
Table I. Our model outperforms the bicubic and back-projection
with lower reconstruction error and higher visual similarity.

Table I also presents the CPU time (in 2.7 Ghz platform) for
Monarch (LR is 133 141 and HR is 399 423), Lena (LR is
125 125 and HR is 375 375), Head (LR is 70 70 and HR

Fig. 17. Sharpness enhancement function defined in (12) with different �.

is 280 280), Lady and Starfish (LR is 107 160 and HR is
321 480). The computation time of the gradient field transfor-
mation for these examples are 0.809 s, 0.640 s, 0.411 s, 0.862 s,
0.829 s and the total time of super-resolution are 1.018 s, 0.873
s, 0.498 s, 1.052 s, 0.996 s. The computation complexity is lin-
early dependent on the number of pixels in the HR image.

V. GRADIENT PROFILE PRIOR FOR IMAGE ENHANCEMENT

Images are commonly degraded by blurring due to a low-pass
filtering or out-of-focus caused by the optics of cameras or some
image filtering procedures. In this section, we will show how to
apply the gradient profile prior to enhance the image sharpness.

The basic idea of sharpness enhancement is to sharpen the
gradient profiles of blurry image by gradient field transforma-
tion, then recover the sharpened image by solving poisson equa-
tion over the sharpened gradient field. Compared with super-res-
olution, the major difficulty in sharpness enhancement is that
no prior knowledge of the sharpness relationship between the
blurry image and the enhanced image can be learned due to the
diversity of blurry images. We will design a parametric sharp-
ness enhancement function and an automatic sharpness transfer
to enhance the blurry image.

A. Sharpness Enhancement Function

We first define sharpness enhancement function , which
maps the sharpness of gradient profile from the blurry image to
the enhanced image. A sharpness enhancement function should
be defined to adaptively and smoothly enhance the edges with
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different sharpness in the blurry image, so should be contin-
uous and , therefore we define

(12)

where is a parameter to control the shape of this function. Ob-
viously, , which means that the gradient profiles will
be sharpened in the enhanced image. Fig. 17 shows the shape of
this function with respect to different , and they have the sim-
ilar shapes as the sharpness dependency learned in Section II-D.
The smaller value of implies that the edge sharpness is more
enhanced. Using this definition, the gradient transform ratio is
defined as ,
where and is the edge pixel and sharpness of the gra-
dient profile passing through . is the learned optimal shape
parameter in Section II-C. After gradient field transformation
guided by the transform ratio, the enhanced images are recov-
ered by solving poisson equation over the transformed gradient
field.

Fig. 18 shows the results of image enhancement using (12)
with different parameter . Please refer to the figure for details.
Obviously, the enhancement results in Fig. 18(b), (c) are much
sharper than the observed image. The parameter is reasonably
set between 0.1 and 0.5 in applications. Fig. 19 illustrates an
example for enhancement of real captured image due to out-of-
focus, and the blurry image is successfully enhanced.

B. Sharpness Transfer

Inspired by the idea of image statistics transfer, we define an
automatic method to enhance image sharpness. The idea is to
transfer the gradient profile sharpness distribution of a source
image (or natural images) to the target blurry image . To im-
plement this idea, we first compute the accumulative sharpness
distributions of the source image (or natural images) and the
blurry image respectively, which are denoted as and .
Then the transferred sharpness for a gradient profile with
sharpness in is estimated as , where

is the inverse of . Using this automatic sharpness map-
ping function, we perform image enhancement by gradient field
transformation and poisson reconstruction.

Fig. 20 gives one example of image sharpness transfer.
Fig. 20(e), (f) show the sharpness distributions of source image
and target image. Then the sharpness distribution of the source
image is transferred to the target blurry image by transfer
mapping in Fig. 20(g), and the enhanced image in Fig. 20(c)
is sharp and clear. We also apply the sharpness distribution
of a collection of natural images shown in Fig. 3 to the target
image. Obviously, the enhanced images are sharp and rarely
has artifacts along structures.

C. Comparison With the Other Edge Enhancement Methods

In Fig. 21, we also compare the proposed enhancement al-
gorithm with unsharp masking, Osher-Rudin’s shock filter [40]
and Kramer’s improved shock filter [41], [39], for comparison.
For the unsharp masking algorithm, the bandwidth of Gaussian
is set to 2.0, and the fraction of difference is set to 1.0. The un-
sharp masking well recovers the contrast of image, however the
enhanced image has halo and ringing artifacts and the edges are

Fig. 18. Image enhancement using sharpness enhancement function. (a) The
blurry image and its gradient magnitude map. (b) Enhanced gradient field
(bottom) with � � ���, and the reconstructed image (top). (c) Enhanced
gradient fields (bottom) with � � ��� and the reconstructed images (top).
Enhanced image in (c) is sharper than (b), and the enhanced image in (b) is
sharper than the blurry image in (a).

Fig. 19. Example of image enhancement for a real captured blurry image due
to out-of-focus. (a) Blurry image. (b) Enhanced image. � is set to 0.2.

Fig. 20. Image sharpness transfer. (a) Source image. (b) Target image.
(c) Result after transferring the sharpness distribution from (a) to (b). (d) Result
after transferring the sharpness distribution of natural images in Fig. 3 to (b).
(e) Sharpness distribution of (a). (f) Sharpness distribution of (b). (g) Sharpness
transfer mapping from (a) to (b). (h) Sharpness transfer mapping from natural
images in Fig. 3 to (b).

not sharp enough in appearance. Both of Osher-Rudin’s shock
filter and Kramer’s improved shock filter produce very sharp
edges. However they tend to sharpen all the detected edges to
be step edges, and the sharpened edges are not regular and with
halo or jaggy artifacts, e.g., the shadow or small details in the
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Fig. 21. Comparison of image enhancement algorithms (Please zoom-in for
better comparison). (a) Blurry image. (b) Our result with � � ���. (c) Result
of Osher-Rudin’s shock filter. (d) Result of Kramer’s improved shock filter.
(e) Result of unsharp masking (Gaussian bandwidth and fraction of difference
are set to 2.0 and 1.0).

boy’s face and the rails appeared in the background layer. Com-
pared to these work, our enhancement algorithm adaptively en-
hances the sharpness of edges controlled by the sharpness en-
hancement function ( is set 0.2 in this example), and it pro-
duces sharp image with rare halo or jaggy artifacts.

VI. CONCLUSION AND DISCUSSION

In this paper, we have established a novel generic natural
image prior—gradient profile prior. Using this prior, gradient
field transformation was proposed to transform the image gra-
dient field guided by the prior knowledge of natural image gra-
dient profiles. The transformed gradient field was applied to
constrain the gradient field of the HR image and the enhanced
image in image super-resolution and sharpness enhancement.
The gradient domain constraint helps to sharpen the details and
suppress ringing or jaggy artifacts along edges. Encouraging re-
sults have been obtained on a variety of natural images or syn-
thetic images in image super-resolution and enhancement.

As a generic prior of natural image, the gradient profile prior
is learned from a large collection of natural images, which re-
flects the generic regularities of natural images. For a specific
image, though its gradient profiles may not fit the prior perfectly,
we can always produce sharp and clear high-resolution or en-
hanced images by gradient field transformation and forcing the
sharpness distribution of the enhanced gradient profiles to fit the
learned statistical relationship or distribution in natural image.
This can be verified by all the examples in this paper, which are
not intentionally selected to fit the prior.

A. Comparison With Fattal’s Edge Statistics

Fattal [34] proposed an effective edge statistics, which is
called edge-frame continuity modulus (EFCM), for image up-
sampling and achieved state-of-the-art results. Compared with
this edge statistics, the gradient profile prior has the following
distinct differences or advantages. Firstly, the gradient profile
model parametrically describes the gradient field of natural
image by only two parameters of shape and sharpness. As
the shape parameter is found to be stable across resolutions,
then the gradient profile prior is simply imposed on the HR
image based on the sharpness dependency between HR and LR
images. Second, both of the gradient profile prior and Fattal’s
edge statistics achieve convincingly excellent super-resolution
results (see Fig. 22 for example), however, our method is sig-
nificantly faster due to its simplicity. It was reported in [34] that

Fig. 22. Comparison of super-resolution results with Fattal’s method
[34]. (a) Input images. (b), (c) Results of Fattal’s method and our method,
respectively.

2 s (2.1 GHz CPU) were taken to up-sample an image of
pixels with factor of 2. However, our method only takes 0.395
s (2.7 GHz CPU) in the same case. Thirdly, as the gradient
profile prior is a generic image prior for natural image, it can
also be applied to generic image enhancement task by directly
enhancing its gradient field.

B. Noisy Image Super-Resolution and Enhancement

For the input image with heavy noise, the noise might also
produce local maximums in the gradient domain, which will
introduce the noisy gradient profiles. After gradient field trans-
formation, the noise might also be enhanced. See Fig. 23(a) for
example, in which noise with standard deviation 10 are added.
One possible solution is to denoise the input image first, then
add the (up-sampled) noise back after the super-resolution or
enhancement. For example, in Fig. 23(d), the noisy LR image is
firstly denoised by the method in [48], then the denoised image
is up-sampled by the proposed method, and the noise layer is
up-sampled by bilinear interpolation. After adding back the
up-sampled noise, the super-resolution result is more pleasant
to our eye due to the removal of noisy gradient profiles.

C. Comparison Over the LR Image Generated With and
Without Smoothing on the HR Image

In the super-resolution methods, the LR image is generally
assumed to be generated by prefiltering (i.e., smoothing) and
then down-sampling of the HR image, which approximate
the image generation process of camera system. On the other
hand, in the literatures of image interpolation, the LR image
is also assumed to be generated by directly down-sampling
of the HR image without prefiltering of the HR image. In
this case, the LR signal is commonly aliased along the image
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Fig. 23. Super-resolution on a noisy image (3X), standard deviation of the
added noises in LR image is 10. (a) Noisy LR image. (b) HR image using nearest
neighbor interpolation. (c) HR image using the proposed image on the noisy LR
image. (d) LR image is firstly denoised by nonlocal denoising method [48], then
the denoised image is up-sampled by the proposed method, and the noises are
up-sampled by bilinear interpolation.

Fig. 24. Comparisons on the LR images generated with and without smoothing
(i.e., anti-aliasing) operation on the HR image. We compare our method with the
interpolation methods in [15], [26], which assume that the LR image is directly
generated by subsampling of HR image without the smoothing operation.

edges, therefore, the methods in [15], [26] attempts to remove
the aliasing artifacts in the HR image. To fairly compare the
interpolation-based methods with our proposed method, we
quantitatively compare them on the LR images down-sampled
with and without prefiltering operations in the first and second
row of Fig. 24 respectively. We can observe that, for the LR
image generated with smoothing operation, the interpolation
based methods in [15], [26] produce blurry HR results, while
our method produces sharp HR image with much more details
and highest PSNR value of 36.10. However, for the LR image
generated without smoothing operation, the methods in [15],
[26] produce more reasonable HR images with higher PSNRs
than our method. That is understandable because these interpo-
lation methods and our method are designed for the LR images
generated with different assumptions. In the real applications,
we should choose the appropriate methods based on how the
LR image is generated.

In the future, we are planning to further speed up the pro-
posed super-resolution and sharpness enhancement algorithm,
then extend the proposed method to video super-resolution and
enhancement. We are also interested in applying the gradient
profile prior to the point spread function estimation [11] and the
image deblur.
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